(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
b(a(a(x1))) → a(b(c(x1)))
c(a(x1)) → a(c(x1))
b(c(a(x1))) → a(b(c(x1)))
c(b(x1)) → d(x1)
a(d(x1)) → d(a(x1))
d(x1) → b(a(x1))
L(a(a(x1))) → L(a(b(c(x1))))
c(R(x1)) → c(b(R(x1)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
B(a(a(z0))) → c1(A(b(c(z0))), B(c(z0)), C(z0))
B(c(a(z0))) → c2(A(b(c(z0))), B(c(z0)), C(z0))
C(a(z0)) → c3(A(c(z0)), C(z0))
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))), B(R(z0)))
A(d(z0)) → c6(D(a(z0)), A(z0))
D(z0) → c7(B(a(z0)), A(z0))
L'(a(a(z0))) → c8(L'(a(b(c(z0)))), A(b(c(z0))), B(c(z0)), C(z0))
S tuples:
B(a(a(z0))) → c1(A(b(c(z0))), B(c(z0)), C(z0))
B(c(a(z0))) → c2(A(b(c(z0))), B(c(z0)), C(z0))
C(a(z0)) → c3(A(c(z0)), C(z0))
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))), B(R(z0)))
A(d(z0)) → c6(D(a(z0)), A(z0))
D(z0) → c7(B(a(z0)), A(z0))
L'(a(a(z0))) → c8(L'(a(b(c(z0)))), A(b(c(z0))), B(c(z0)), C(z0))
K tuples:none
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
B, C, A, D, L'
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
B(c(a(z0))) → c2(A(b(c(z0))), B(c(z0)), C(z0))
A(d(z0)) → c6(D(a(z0)), A(z0))
L'(a(a(z0))) → c8(L'(a(b(c(z0)))), A(b(c(z0))), B(c(z0)), C(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(R(z0)) → c5(C(b(R(z0))), B(R(z0)))
D(z0) → c7(B(a(z0)), A(z0))
B(a(a(z0))) → c1(A(b(c(z0))), B(c(z0)), C(z0))
C(a(z0)) → c3(A(c(z0)), C(z0))
C(b(z0)) → c4(D(z0))
S tuples:
B(a(a(z0))) → c1(A(b(c(z0))), B(c(z0)), C(z0))
C(a(z0)) → c3(A(c(z0)), C(z0))
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))), B(R(z0)))
D(z0) → c7(B(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c5, c7, c1, c3, c4
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
S tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
K tuples:none
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c4, c5, c7, c1, c3
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(a(z0)) → c3(C(z0))
We considered the (Usable) Rules:
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
d(z0) → b(a(z0))
b(a(a(z0))) → a(b(c(z0)))
And the Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(B(x1)) = x1
POL(C(x1)) = [1] + [2]x1
POL(D(x1)) = [1] + [2]x1
POL(R(x1)) = 0
POL(a(x1)) = [1] + [2]x1
POL(b(x1)) = x1
POL(c(x1)) = [1] + [2]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(d(x1)) = [1] + [2]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
S tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
K tuples:
C(a(z0)) → c3(C(z0))
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c4, c5, c7, c1, c3
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(b(z0)) → c4(D(z0))
We considered the (Usable) Rules:
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
d(z0) → b(a(z0))
b(a(a(z0))) → a(b(c(z0)))
And the Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(B(x1)) = x1
POL(C(x1)) = [4] + [4]x1
POL(D(x1)) = [2] + [4]x1
POL(R(x1)) = 0
POL(a(x1)) = [1] + [4]x1
POL(b(x1)) = x1
POL(c(x1)) = [1] + [4]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(d(x1)) = [1] + [4]x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
S tuples:
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
K tuples:
C(a(z0)) → c3(C(z0))
C(b(z0)) → c4(D(z0))
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c4, c5, c7, c1, c3
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
D(z0) → c7(B(a(z0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
S tuples:
C(R(z0)) → c5(C(b(R(z0))))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
K tuples:
C(a(z0)) → c3(C(z0))
C(b(z0)) → c4(D(z0))
D(z0) → c7(B(a(z0)))
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c4, c5, c7, c1, c3
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
B(a(a(z0))) → c1(B(c(z0)), C(z0))
We considered the (Usable) Rules:
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
d(z0) → b(a(z0))
b(a(a(z0))) → a(b(c(z0)))
And the Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(B(x1)) = x1
POL(C(x1)) = [2] + [2]x1
POL(D(x1)) = [2] + [2]x1
POL(R(x1)) = x1
POL(a(x1)) = [2] + [2]x1
POL(b(x1)) = x1
POL(c(x1)) = [2] + [2]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(d(x1)) = [2] + [2]x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(a(a(z0))) → a(b(c(z0)))
b(c(a(z0))) → a(b(c(z0)))
c(a(z0)) → a(c(z0))
c(b(z0)) → d(z0)
c(R(z0)) → c(b(R(z0)))
a(d(z0)) → d(a(z0))
d(z0) → b(a(z0))
L(a(a(z0))) → L(a(b(c(z0))))
Tuples:
C(b(z0)) → c4(D(z0))
C(R(z0)) → c5(C(b(R(z0))))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
C(a(z0)) → c3(C(z0))
S tuples:
C(R(z0)) → c5(C(b(R(z0))))
K tuples:
C(a(z0)) → c3(C(z0))
C(b(z0)) → c4(D(z0))
D(z0) → c7(B(a(z0)))
B(a(a(z0))) → c1(B(c(z0)), C(z0))
Defined Rule Symbols:
b, c, a, d, L
Defined Pair Symbols:
C, D, B
Compound Symbols:
c4, c5, c7, c1, c3
(15) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
C(R(z0)) → c5(C(b(R(z0))))
C(b(z0)) → c4(D(z0))
Now S is empty
(16) BOUNDS(O(1), O(1))